
• 

THE ELASTIC CONSTANTS OF MgAg AND MgCU2 SINGLE CRYSTALS 415 

N 
~ 

~ 
(fl 
UJ 
Z 
>-o 

N 
-Q 

(fl 
t-

1'41-

1·3 

1·2 

z042 
~ 
(fl 

~040 
u 

~0'27 
(fl 

:3 0·26r 
UJ 

0·251-

o 

II% 

100 200 300 400 500 
TEMPERATURE ("K) 

FIG. 3. The temperature dependence of elastic constants 
of MgCU2' 

Table 1. The adiabatic elastic constants of MgAg 
(in units of 1012 dyn/cm2) 

T("K) Cll C12 Cu 

80 0'865 0'579 0'520 
100 0·863 0·578 0·517 
150 0·859 0·575 0'511 
200 0·855 0'572 0·504 
250 0·851 0·570 0·496 
300 0·846 0'567 0'485 
350 0·839 0'560 0'474 
400 0·831 0·553 0·464 
450 0·816 0'540 0·452 
500 0·798 0'524 0·438 

stronger ill the isostructural phases, ordered 
CuZn(5) and cubic AuCd(6). The anisotropy factor 
also increases from MgAg ("" 3·5) to CuZn ("" 8) 
to AuCd ("" 12). This is understandable from the 
viewpoint that the ion-ion distance in MgAg is 
quite large compared to that in CuZn or AuCd. 
Therefore, we expect that the contribution arising 
from a short-range repulsion term is less in the 
case of MgAg, and its anisotropy should be also 
less pronounced. The absence of phase transforma­
tion in MgAg may well be attributed to its rela­
tively low anisotropy. The recently reported 

Table 2. The adiabatic elastic constants of MgCU2 

T(OK) 

80 
100 
150 
200 
250 
300 
350 
400 
450 
500 

(in units of 1012 dyn/cm2) 

Cll 

1·250 
1·249 
1·243 
1'239 
1'232 
1'228 
1'214 
1'200 
1·185 
1-171 

0·717 
0·717 
0·714 
0·712 
0·709 
0·706 
0'697 
0·690 
0·681 
0·675 

0·423 
0·422 
0'420 
0·418 
0'415 
0·412 
0·407 
0·402 
0·396 
0·391 

elastic data on NiAI, (7) given its CIC' = 3 ·28 at 
room temperature, also support the above postula­
tion. 

Theoretical calculations of elastic constants of 
b.c.c. metals are due to FUCHS, ZENER, JONES and 
ISENBERG(B-11). Following FUCHS and ISENBERG(B.11) 
we may divide the crystal energy into a number of 
terms as: 

W = Wo+ WF+(WE - Ws)+ WI' 

Here, Wo is the energy of the lowest S state, W F is 
the Fermi energy, WE is the electrostatic energy, 
Ws is the self-energy of a Wigner-Seitz sphere, 
and WI is the overlap energy between neighboring 
ions. From the values of measured elastic con­
stants, the lattice spacing and an assumed effective 
charge of y2, we may estimate at least semi­
quantitatively, the separate contributions to the 
three physically meaningful shear and bulk moduli, 
C, C', and B. According to ISENBERG'S scheme, (11) 
Wo, Wp and Ws are nearly functions of volume 
only, and therefore have no contribution to C and 
C'. While under condition of hydrostatic compres­
sion, (WE - Ws) ~ 0, the contribution of this term 
to B is negligible. The results of the calculation 
are presented in Table 3. To C', the contribution 
of the nearest neighbors turns out to be slightly 
negative. Therefore, the stability of the MgAg 
crystal IS apparently dominated by the next 
nearest neighbor interaction, a condition already 
known to exist in the CuZn crystal. 

The results for MgCu2, with twenty-four atoms 
per unit cell and supposed to be a space-filling 
compound, indicate that it is fairly isotropic. In 
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Table 3. contributions to the elastic constants of 
MgAg in units of 1012 dyn/cm2 

Contributions from C C' B 

WE-Ws 0·29 0·04 
Wo+Wp 0·32 
WI Nearest neighbors 0·23 -0·046 0·26 

Next nearest < 0·01 0·145 0·10 
neighbors 

Total 0'52 0·14 0·68 

fact, another Laves phase compound of hexagonal 
structure, CaMg2, whose elastic constants have 
been reported, (12) is also isotropic. The mechanical 
behaviors(13) and elastic properties of MgCU2 are 
very similar to those of the diamond-structure 
elements. This may be due to the fact that they 
belong to the same space group 011,7 -Fd3m. A 
comparison between the elastic properties of 
MgCu2 and those of the three IVa elements(14) is 
shown in Table 4. All the numbers in this table 
are supposed to be unity if any of the idealized 
conditions are obeyed. BORN's relation(14) is based 
on a two-foree-constant model for crystals with 
a diamond lattice, taking into account only the 
forces between nearest neighbors. Harrison's 

relation is also based on a two-foree-constant 
model but implicitly introduces the second nearest 
neighbor interaction. (14) The fact that the elastic 
constants of MgCu2 fit Harrison's relation per­
fectly, and better than those of the diamond 
structures, is very interesting, if an extension of 
his formulation to the cubic Laves phase is justified. 
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Table 4. A comparison of MgCU2 with the diamond structure elements 

Anisotropy Born's relation Harrison's relation 
Crystal 2C44 4Cll(Cl i - C44) (7Cll +2C1 2)C44 

Cll -Cl2 (Cll+Cd' 3(Cll +2Cl2)(Cll-Cl2) 

Diamond 1-54 1·49 1-18 
Si 1·56 1·08 1'14 
Ge 1·67 1-01 1'20 
MgCu. 1-59 1·07 1·00 


